Synthesis and X-Ray Crystal Structure of the Trimetallic Neopentylidyne Complex $\left[\left\{Cl_2(\text{MeOCH}_2\text{CH}_2\text{OMe})\text{Ta}(\mu\text{-}\text{C} \text{M}\text{e}_3)\right\}_2 \text{Zn}(\mu\text{-}\text{Cl})_2\right]$

Anton W. Gal"? and Harry van der Heijden

KoninklijkeIShell- Laboratorium, Amsterdam (Shell Research B. V.), Badhuisweg 3, 1031 CM Amsterdam, The Netherlands

 α -Hydrogen abstraction from the neopentylidene complex [Cl₃(MeOCH₂CH₂OMe)Ta(CHCMe₃)] by (Me_3CCH_2)₂Zn results in the bridging neopentylidyne complexes $[\{Cl_2(\text{MeOCH}_2\text{CH}_2\text{OMe})Ta(\mu\text{-}\text{C}C\text{Me}_3)\}_2$ Zn- $(\mu$ -CI)₂] and [{CI₂(MeOCH₂CH₂OMe)Ta(μ -CCMe₃)}Zn(CH₂CMe₃)CI]; the crystal structure of the first complex reveals the co-ordination of two Ta=CCMe₃ fragments to one ZnCI₂ molecule.

As part of our search for labile d^o tantalum alkylidyne complexes and their possible use in the conversion of alkynes, we have now prepared a series of bridging neopentylidyne complexes *via* a-hydrogen abstraction from the neopentylidene group in $\text{[Cl}_3(\text{dme})\text{Ta}(\text{CHCMe}_3)$] **(1)** $\text{(dme = 1,2-dimethoxy-})$ ethane) by (Me₃CCH₂)₂Zn and Me₃CCH₂Li (Scheme 1).

Complex (1) was prepared from $Ta(CH_2CMe_3)_2Cl_3$ in dme in the presence of one equivalent of tetrahydrofuran to induce the α -hydrogen abstraction,¹ since direct preparation in dme proved not to be possible.

Upon reaction of **(1)** with half a molar equivalent of $(Me₃ CCH₂)₂Zn$ in diethyl ether, neopentane was evolved, and

the trimetallic pink-red complex $[\{Cl_2(dme)Ta(\mu-CCMe_3)\}_2Zn (\mu$ -Cl₂] (2) precipitated from solution. When the reaction was performed with one equivalent of $(Me₃ CCH₂)₂Zn$ in benzene the soluble red bimetallic complex $[\{Cl_2(dme)Ta(\mu-CCMe_3)\}] Zn(CH_2CMe_3)Cl$ (3) was slowly formed. In accordance with the above two reactions, **(3)** proved to be unstable in diethyl ether: it disproportionated to $Me₃CCH₂)₂Zn$ and (2) through precipitation of **(2).** The instantaneous reaction of **(1)** with one equivalent of Me,CCH,Li produced the bright-red bimetallic complex $[(Me₃CCH₂)₃Ta(\mu-CCMe₃)][Li(dme)]$ (4), which has been reported before.² Quantitative conversion of (1) into (4) was obtained upon use of four equivalents of MeCCH₂Li. No intermediates were observed in the ¹H n.m.r. spectrum upon use of one equivalent of $Me₃CCH₂Li$. So, in the above reactions a-hydrogen abstraction from the neopentylidene group in **(1)** is accompanied by a varying degree of alkylation, depending on the nature of the solvent and the alkylating agent. The com-

t Present address: Billiton Research B.V., P.O. **Box 38,** 6800 LH Arnhem, The Netherlands.

Scheme 1. i, 0.5 mol/mol (Me₃CCH₂)₂Zn in diethyl ether, 4 h; ii, 1 mol/mol $(Me_3CCH_2)_2Zn$ in benzene, 2 h; iii, 4 mol/mol Me₃CCH₂Li in benzene, instantaneous; iv, diethyl ether, instantaneous.

plexes (1) , (2) , (3) , and (4) have been identified by ¹H and ¹³C n.m.r. spectroscopy. \ddagger

The structure of **(2)** was determined by a single crystal X-ray diffraction study of the complex (Figure I).§

Crystal data: $C_{18}H_{38}Cl_6Ta_2Zn$, $M = 964.19$, orthorhombic, space group *Pbca*, $a = 9.519(2)$, $b = 14.026(3)$, $c = 44.645$ -(9) Å, $U = 5960.7$ Å³, $Z = 8$, $D_c = 2.15$ g cm⁻³, $F(000) = 3648$, μ (Cu-K_a) = 196.4 cm⁻¹, $\bar{\lambda}$ = 1.54184 Å. At convergence R = 0.063 ($R_w = 0.081$) for 2799 unique observed reflections $I >$ 3.0 $\sigma(I)$] measured in the range 5.6 $\le 2\theta \le 150^\circ$ at 164 K on an Enraf-Nonius CAD4 diffractometer.

The molecule has virtual C_2 symmetry although there is no crystallographic symmetry imposed. Complex **(2)** represents the first trimetallic example of stabilization of a transition metal alkylidyne unit by a non-transition metal Lewis acid.

3 The single crystal X-ray study of (2) was carried out by the Station, Texas 77840, U.S.A. Atomic co-ordinates are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 **IEW.** Any request should be accompanied by the full literature citation for this communication.

Figure 1. Molecular structure of $\left[\frac{\text{Cl}_2(\text{MeOCH}_2\text{CH}_2\text{OMe})}{\text{Ta} \cdot \text{O}} \right]$ $(\mu$ -CCMe₃) ${2\pi(\mu$ -Cl₂)] (2). Selected dimensions not presented in the text (A and °). Distances: Ta(1)-O(1) 2.461(13), Ta(1)-O(2) 2.165(12), Ta(2)-O(3) 2.412(3), Ta(2)-O(4) 2.175(14). Angles: Ta(l)-C(l)-C(2) 156(l), Ta(2)-C(6)-C(7) **159(** 1), Ta(1)- C(1)-Zn 90.8(7), Ta(2)-C(6)-Zn **9 I.** 1(7), Zn-C(1)-C(2) **1** 13(I), Zn-C(6)-C(7) 110(**l),** C(1)-Zn-C(6) 147.0(6), C1(3)-Zn-C1(4) 1 05 *.O(* 2).

Two binuclear complexes of similar geometry have been characterized before by X -ray diffraction: the (neopentylidyne)tantalum (d^o) complex $[(Me₃ CCH₂)₃ Ta(μ -CCMe₃)][Li (dmp)$] (5) $(dmp = N, N'$ -dimethylpiperazidine)² and the (neopentylidyne)tungsten (d²) complex $[\langle C|(Me_{3}P)_{3}W(\mu-CH)\rangle-$ AlMe₂R] (R = Cl, Me) (6).³

$$
[(Me_3CCH_2)_3Ta(\mu\text{-}CCMe_3)][Li(dmp)]
$$
\n(5)
\n
$$
[(Cl(Me_3P)_3W(\mu\text{-}CH))AIME_2R]
$$
\n(6) R = Cl, Me
\n
$$
[Ta(CHCMe_3)(PMe_3)_2(\mu\text{-}Cl)Cl_2]_2
$$
\n(7)

The observed geometry of the $Ta-C(CMe₃) - Zn$ fragment (Figure 1) is very similar to that observed for the $Ta-C(CMe₃)$ -Li fragment in *(5),* the W-C(H)-A1 fragment in *(6),* and the Ta– $C(CMe₃)$ –H fragment in the (neopentylidene)tantalum(d^o) complex $[Ta(CHCMe₃)(PMe₃)₂(\mu$ -Cl)Cl₂]₂(7).⁴ Comparison of the Ta–C bond lengths in (2) $[Ta(1)-C(1) 1.86(2)$ and Ta (2) – $C(6)$ 1.79(2) Å with that in (7) $[1.898(2)$ Å suggests that the Ta-C bonds in **(2)** are intermediate between a double and triple bond. The long C-Zn distances in **(2)** [C(l)-Zn 2.10(2) and $C(6)$ -Zn 2.13(2) Å], which exceed those reported for C(sp³)-Zn in tetrahedral zinc(II) complexes $(1.94-2.03 \text{ Å})$,⁵ reflect a weak C-Zn interaction, analogous to the weak C-Li, C-Al, and C-H interactions in *(5),* **(6),** and **(7).** The Ta-Zn distances in **(2)** [Ta(1)-Zn 2.825(3) and Ta(2)-Zn 2.804(3) A] do not exclude a weak Ta-Zn interaction. Comparison of the bridging Ta-C1 and Zn-C1 distances in **(2)** [Ta(l)-Cl(3) 2.451(4) and Ta(2)–Cl(4) 2.454(4); Zn–Cl(3) 2.535(5) and Zn– Cl(4) 2.496(6) A] with the terminal Ta-Cl distances in **(2)** $[Ta(1)-Cl(1)$ 2.375(4), $Ta(1)-Cl(2)$ 2.390(4), $Ta(2)-Cl(5)$ 2.366(5), and Ta(2)–Cl(6) 2.390(4) Å] and terminal Zn–Cl distances reported before $(2.15-2.26 \text{ Å})$,^{5a,6} suggests that bridging chlorines are bonded more tightly to Ta than to Zn.

The bonding in **(2)** can be described in two ways, (A) and **(B).** The mesomer **(A)** represents a tantalum alkylidyne species stabilized by a double Lewis acid-base interaction. The mesomer (B) formally represents a tantalum (zincaalkylidene) species with one Lewis acid-base interaction, in which the zinca-alkylidene moiety resembles the distorted neopentylidene group in **(7).** Preliminary study of the reaction of

¹ Characteristic n.m.r. data of (1), (2), (3), and (4) (δ in p.p.m.
relative to Me₄Si, J in Hz) (resonances for dme, typical for
asymmetric co-ordination mode, have been omitted). (1) ¹H
n.m.r. (CD₂Cl₂): 3.17 CHCMe₃); ¹³C n.m.r. (CD₂Cl₂): 252.8 (d, CHCMe₃), 46.2 (s, *CHCMe₃)*, and 33.2 p.p.m. (q, CHCMe₄), (2) ¹H n.m.r. (CD₂Cl₂): 1.34 (s, 18H, *CCMe₃*); ¹³C n.m.r. (CD₂Cl₂): 279.5 **(s,** *CCMe₃***)**, 50.4 **(s,** CCMe,), and 35.8 p.p.m. **[q,** CCMe,, J(CH) 1201. **(3)** 'H n.m.r. (CD,Cl,) [structural assignment based on the analogy of the n.m.r. data with data for (2)]; 1.25 **(s,** 9H, CCMe₃), 1.08 (s, 9H, CH₂CMe₃), and 0.9-0.8 (br. s, 2H, CH₂CMe₃), ¹³C n.m.r. (C₆D₆): 277.7 (s, CCMe₃), 49.9 (s, CCMe₃), 35.4 (q, CCMe₃), 31.6 (q, CH₂CMe₃), and 27.8 p.p.m. (t, 27H, CH₂CMe₃), and 0.66 (br. s, 6H, CH₂CMe₃). $CH_2\text{CMe}_3$). **(4)** ¹H n.m.r. (C_6D_6) : 1.61 **(s, 9H, CCMe₃)**, 1.46 **(s**,

(2) with alkynes underlines the importance of the resonance structure **(A)**: dme and $ZnCl₂$ are displaced from **(2)** and the neopentylidyne species $Cl₂Ta=CCMe₃$ contained in (2) are each converted by two molecules of alkyne $(R-C=C-R)$ into the η^5 -cyclopentadienyl species (η^5 -C₅R₄CMe₃)TaCl₂.⁷ So in this (unexpected) reaction (2) clearly behaves as a ZnCl₂-stabilised neopentylidyne complex.

Received, 4th January 1983; Corn. 018

References

- G. **A.** Rupprecht, **L. W.** Messerle, J. D. Fellmann, and R. R. Schrock, *J. Am. Chem.* **SOC.,** 1980, **102,** 6236.
- $\overline{2}$ L. **J.** Guggenberger and R. R. Schrock, *J. Am. Chem. SOC.,* 1975, *97,* 2935.
- P. R. Sharp, **S.** J. Holmes, and R. R. Schrock, *J. Am. Chem. SOC.,* 1981, **103,** 965.
- **A.** J. Schultz, R. K. Brown, J. M. Williams, and R. R. Schrock, *J. Am. Chem.* **SOC.,** 1981, **103,** 169.
- (a) H. Yasuda, *Y.* Ohnuma, **A.** Nakamura, Y. Kai, N. Yasuoka, and N. Kasai, *Bull. Chem. SOC. Jpn.,* 1980, **53,** 1101; (b) **P. T.** Moseley and H. M. M. Shearer, J. *Chem. Soc., Dalton Trans.,* 1973, 64; (c) **H.** M. M. Shearer and C. B. Spencer, *Chem. Commun.,* 1966, 194.
- D. **S.** Sekutowsky and G. D. Stucky, *Inorg. Chem.,* 1975, **14,** 2192.
- **A.** W. Gal, H. van der Heyden, **A. L.** C. Smit, and **J.** J. de Boer, to be submitted for publication in *J. Chem. Soc., Chem. Commun.*